论文部分内容阅读
提出了一种基于加权相空间重构降噪及样本熵的齿轮故障分类方法,给出了加权相空间重构降噪及样本熵的原理及计算公式。该方法将一维的时间序列重构到高维的相空间,通过区分吸引子在高维空间的不同的属性与特征,对原始信号进行加权相空间重构降噪,再计算降噪后信号的样本熵从而实现对齿轮故障信号的分类。对该方法进行了仿真与实验研究,结果表明,降噪后的信号有效地抑制了噪声对实验结果的影响,使得样本熵能够对齿轮不同的工作状态进行有效区分。