论文部分内容阅读
为解决高可靠性设备的剩余寿命预测问题,针对寿命数据缺少、物理模型难以建立的情况,结合单调退化数据,采用逆高斯退化模型,对设备的退化过程进行建模;通过参数估计的方法得到退化模型,进而预测设备的剩余寿命。在有同批次多组数据都能对逆高斯模型进行参数估计的情况下,将会面临数据融合问题。采用基于证据推理(ER)的方法对多源数据进行融合处理,引入属性权重的概念,以此更加准确地估计逆高斯模型的参数。最后,通过实验仿真,证明了所提方法能够得到较为可信的参数估计结果。