论文部分内容阅读
Robocup是世界上规模最大的机器人足球大赛,包括软件仿真与硬件实体两类项目的比赛。R0boCup仿真2D作为软件仿真项目的重要组成部分,成为研究人工智能和多Agent智能体协作的优秀实验平台。将Q学习应用到RoboCup仿真2D比赛的前场进攻动作决策中,通过引入区域划分,基于区域划分的奖惩函数和对真人足球赛中动作决策的模拟,在经过大量周期的学习训练后,使Agent能够进行自主动作决策,从而加强了多Agent的前场进攻实力。