论文部分内容阅读
以黑龙江省凉水国家级自然保护区为研究区,采用“高分一号”卫星提供的多光谱影像作为遥感数据源,通过对遥感影像进行小波变换处理,之后选择植被指数、纹理特征、地形因子作为分类特征,利用随机森林算法对该地区森林类型进行分类。结果表明,遥感图像在进行小波变换后,基于随机森林算法的森林类型分类精度为91.68%,Kappa系数为0.90,较未进行小波变换时的分类精度提高10.67%。总体来看,结合小波变换的随机森林分类方法可以获得比较高的分类精度。为森林类型分类提供一种新的思路,且为提高森林类型分类精度提供一种参考方