论文部分内容阅读
Wiener filtering is used to estimate receiver function in a time_domain. With the vertical component of 3_component teleseismic P waveform as the input of a Wiener filter, receiver function as the filter response, and radial and tangential components as the expected output, receiver function is estimated by minimizing the error between expected and actual outputs. Receiver function can be obtained by solving the Toeplitz equation using the Levinson algorithm. The non_singularity of the Toeplitz equation ensures the stability of Wiener Deconvolution. Both synthetic and observational seismogram checks show that Wiener Deconvolution is an effective time_domain method to estimate receiver function from teleseismic P waveform.
Wiener filtering is used to estimate receiver function in a time_domain. With the vertical component of 3_component teleseismic P waveform as the input of a Wiener filter, receiver function as the filter response, and radial and tangential components as the expected output, receiver function is estimated by minimizing the error between expected and actual outputs. Receiver function can be obtained by solving the Toeplitz equation using the Levinson algorithm. The non_singularity of the Toeplitz equation ensures the stability of Wiener Deconvolution. Both synthetic and observational seismogram checks show that Wiener Deconvolution is an effective time_domain method to estimate receiver function from teleseismic P waveform.