论文部分内容阅读
SiC p/6061Al alloy composite was welded by using TIG and pulsed-TIG welding (P-TIG) without addition of filler metal, or with addition of Al-Si or Al-Mg filler metal. The microstructure and properties of the weld were investigated with XRD, OM, TEM, and MTS-810 testing system was used to observe the effect of different welding procedure and filler metals on the microstructure and properties of the weld. Thermodynamic of SiC-Al reaction was used to analyze the tendency of the reaction between SiC particle and Al matrix during welding. The results showed that the P-TIG tends to produce less plate-like Al 4C 3 precipitates than TIG; when welding with P-TIG, addition of Al-Si filler metal can not only prevent from formation of Al 4C 3, but also decrease hot crack sensitivity of weld; the tensile strength of joint of adding Al-Si filler metal is higher than that of adding Al-Mg filler metal. The SiC p/6061Al composite can be successfully welded by P-TIG with addition of Al-Si filler metal.
SiC p / 6061Al alloy composite was welded by using TIG and pulsed-TIG welding (P-TIG) without addition filler metal, or with addition of Al-Si or Al-Mg filler metal. The microstructure and properties of the weld were with XRD, OM, TEM, and MTS-810 testing system was used to observe the effect of different welding procedure and filler metals on the microstructure and properties of the weld. Thermodynamic of SiC-Al reaction was used to analyze the tendency of the reaction between SiC particle and Al matrix during welding. The results showed that the P-TIG tends to produce less plate-like Al 4C 3 precipitates than TIG; when welding with P-TIG, addition of Al-Si filler metal can not only prevent formation of Al 4C 3, but also decrease hot crack sensitivity of weld; the tensile strength of joint of adding Al-Si filler metal is higher than that of adding Al-Mg filler metal. The SiC p / 6061Al composite can be successfully welded by P-TIG with addition of Al-Si filler m etal.