论文部分内容阅读
太阳能电池板是光伏发电的核心部件,表面质量关系着其使用寿命和发电效率。针对目前太阳能电池板缺陷检测方法存在着检测效率低、周期长、检测缺陷单一等问题,文章设计了一种基于深度学习的太阳能电池板缺陷检测模型SSNBDL,其基本思想是,在Segnet网络框架基础上,使用空洞卷积替代其中的池化层,使得在增大感受野的同时还保留了图像的边缘信息,基于该模型对太阳能电池板缺陷进行检测,明显提高了检测的准确率。