论文部分内容阅读
针对非线性、时变等缺陷导致传统的控制器控制效果较差、不适应电液伺服系统的现象,提出了用于电液伺服控制的基于粒子群优化算法对神经网络的权值进行学习训练的PSO-NN算法。结合电液伺服系统实例分析,用MATLAB仿真得到了输入阶跃信号和正弦信号时,PSO-NN算法的输出曲线以及适应度曲线;为了展示PSO-NN算法的效果,用BP算法仿真了对应输入阶跃信号和正弦信号的输出。仿真结果表明:在电液伺服系统的控制中,PSO-NN算法性能优于BP算法,系统输出具有更好的收敛性和对输入的跟随性,从而证明PSO-NN算法对于