论文部分内容阅读
目的为了提高故障预测的精度,针对支持向量回归SVR(Support vector machine for regression,SVR)参数选择困难的问题,提出一种采用人工蜂群(artificial bee colony,ABC)算法优化支持向量回归(SVR)的故障预测模型(ABC-SVR)。方法该模型先对样本数据进行重构,然后将故障预测误差(适应度)作为优化目标,通过ABC算法寻优找到最优的SVR参数,建立故障预测模型。最后通过实例仿真验证模型的优越性。结果采用ABC算法优化的SVR故障预测模型进行时间