论文部分内容阅读
基于改进的Cholesky分解,研究分析了纵向数据下半参数联合均值协方差模型的贝叶斯估计和贝叶斯统计诊断,其中非参数部分采用B样条逼近.主要通过应用Gibbs抽样和Metropolis-Hastings算法相结合的混合算法获得模型中未知参数的贝叶斯估计和贝叶斯数据删除影响诊断统计量.并利用诊断统计量的大小来识别数据的异常点.模拟研究和实例分析都表明提出的贝叶斯估计和诊断方法是可行有效的.