论文部分内容阅读
针对个体手势动作信号的差异性和不稳定性,提出了一种基于加速度传感器的连续动态手势识别方法。通过MEMS加速度传感器采集手势动作信号,并结合手势信号的动作特征,对单个手势的有效数据进行自动定位截取,经预处理和特征提取后,构建隐马尔可夫模型(HMM)以实现对特定手势的实时识别。通过设计实现了一种可穿戴手势信号采集硬件原型系统,对10类手势的1000个手势数据进行识别对比实验,统计结果表明:该方法可以对连续手势进行实时有效的识别。