论文部分内容阅读
针对注塑间歇过程多阶段、缓慢时变、非线性和质量变量测量值不能在线获得等特点,提出子时段滑动窗口广义回归神经网络质量预测方法,首先,采用分类算法对三维数据矩阵的时间片PCA负载矩阵进行分析,根据相关性分析把注塑过程划分为几个子时段,然后确定与重量密切相关的阶段,在确定的阶段内采用滑动窗口建立GRNN多模型,解决常规MPLS在工业应用过程中存在的几个潜在问题:(1)静态单一模型;(2)模型失配问题;(3)MPLS线性方法不能充分有效压缩和抽取非线性过程信息;(4)估计未来测量变量所引进的模型偏差。所提方法与子