论文部分内容阅读
为能更好地预测工艺条件对膜分离过程的影响,运用BP神经网络技术建立输入变量为压差、流速、浓度和温度,输出变量为膜通量的预测模型。通过大量实验数据训练预测模型,得到的网络模型整体误差平方和仅为0.014 5;计算值与模拟值相比,10组不同条件的膜通量平均预测误差仅为1.1,证实了所建立的BP神经网络膜通量预测模型与实验值吻合程度较好,有较好地预测能力。在此基础上进一步考察了工艺参数对膜分离过程的影响。