论文部分内容阅读
利用支持向量机回归算法(SVM)结合粒子群优化算法(PSO)建立了用于蒸发预测的PSO_SVM模型,用和田地区实测蒸发量对其进行拟合与预测,并与传统的最小二乘支持向量机(LS—SVM)的预测结果进行了对比,结果表明PSO_SVM预测蒸发量的精度要高于LS_SVM,说明该模型可以用于蒸发预测。