论文部分内容阅读
针对飞行数据的特点,提出了一种基于动态模糊神经网络(DFNN)的飞行数据模型辨识方法。该方法采用在线学习方式,通过动态增加和删除神经元节点的策略实现网络结构学习,采用递推最小二乘法实现网络权值的在线调整,以最终得到一个结构简单、泛化能力强的神经网络。以某特定时间段的飞参数据为仿真样本,将该DFNN用于参数关联模型的辨识,实验结果表明该辨识方法收敛速度快、泛化能力强。