论文部分内容阅读
[摘要]:针对黄土塬地区煤田三维地震勘探资料处理工作面临着许多特殊问题,如复杂的地表条件和松散的黄土严重地影响了野外地震数据的采集质量,严重地影响了地震资料的正确成像。采取正确合理的处理流程有助于得到高分辨率的地震资料,对于提高解释构造成果的精度有着非常重要的意义。
[关键词]: 三维地震勘探 资料处理 应用
0. 引言
三维地震勘探技术在煤田上的应用经过近二十年的发展,在东部平原取得了显著的地质效果,但随着近几年的开采,煤炭资源越来越少,而中西部地区的煤炭资源占全国煤炭资源总量的2/3,资源勘探的重点已转向西部地区[1]。
由于西部地区第四系黄土层对地震波的吸收衰减比较强烈,且往往地形复杂,给地震勘探造成一定困难。随着三维地震勘探技术在西部黄土塬区的应用,针对黄土塬区三维地震勘探处理技术的应用,对于提高勘探质量为煤矿安全生产提供保障有着深远的影响。
1.项目概况
陕西某煤矿位于陕西省白水县,由于原有勘探程度远远不能满足采区设计和工作面划分的要求。煤矿决定对采区进行三维地震勘探,以为下一步的巷道布置和安全生产提供保障。由于勘探区内黄土层较厚,不利于地震波的传播,且黄土冲沟也发育,地表高差达200m,地形十分复杂;塬上及半坡密布大量的苹果园,测量通视相当困难,这给地震的采集造成较大的影响。
2.数据采集
(1)黄土覆盖区段。巨厚黄土对地震波的吸收衰减极为强烈;区内潜水面很深,低速带调查结果表明,黄土层速度极低,其与基岩面可形成良好的波阻抗界面。因此塬上施工时该界面能产生折射、强反射及层间多次波,对目的层反射波形成严重干扰,该区域是本区激发条件较差的地区。
(2)坡积地段。坡积物成份复杂、堆积松散、成孔难、激发难,高差变化剧烈,是本区最难获得资料地区。
(3)从原始资料上看,主要目的层反射波信噪比差异很大,勘探区南部边缘及勘探区西北部资料相对较差。
总的来说,经过野外的努力,对黄土覆盖区来说获得了较好的效果,资料有较大一部分主要目的层的信噪比很高,为完成勘探任务奠定了基础。
3.资料处理的主要技术措施
针对原始资料以上的特点,制定了本次资料处理的指导思想:在“三高”处理过程中,以保幅处理为重心,重点提高资料的信噪比。突出目的层,兼顾浅、中、深层。
(1)静校正
静校正是地震资料处理中的关键环节之一。由于地表高程及地表低(降)速带厚度、速度存在横向变化,使得由此产生的地震波旅行时差会对信号的叠加效果产生一定的不利影响,致使反射波同相轴信噪比下降、频率降低。
结合本区实际情况,确定了野外静校正,初至折射静校正、自动剩余静校正逐步细化的静校正应用方法。在此补充说明的一点是在绿山初至折射静校正的逐炮拾取阶段,务求所拾取的初至折射波来自于在全区较能连续追踪的同一层,以建立精确的近地表模型。
在准确求取了绿山所得静校正量后,分离长波长分量及短波长分量,应用短波长分量,解决邻道间的剧烈跳跃现象。在此基础上多次求取剩余静校正量。求自动剩余静校正量时,应在全区找一个较好的标志层,使其达到效果理想而且保真。图1是静校正前后单炮对比。
(2)振幅处理
振幅处理包括:
a.补偿地震波的地层吸收;
b.结合地层,选定速度进行球面扩散补偿;
c.对地表一致性振幅分解,求出振幅补偿因子,对地震数据进行消除由于激发、接收等因素引起的振幅能量差异进行一致性校正;
d.动态振幅均衡。
对振幅的上述处理,完全消除了由于地表剧烈变化,地层吸收等因素对振幅产生差异。使振幅变化真正反映地层物性参数的差异。
(3)干扰波消除
a.迭前滤波:15~25、140~160消除低频及高频干扰。
b.剔除坏道,不正常道,尖脉冲等。
c.初至干扰波及声波的切除。
(4)地表一致性处理
在地表一致性振幅补偿的基础上,选用地表一致性预测反褶积。完成在炮域,接收点域、共偏移距域的地表一致性预测,同时压缩子波,提高分辨率及信噪比。
(5)速度分析
由于静校正部分地段信噪比极低的影响,使速度分析很难一次到位,针对本区采取如下措施。
a.先采用常速度叠加,拾取较好段的速度值作为初始速度。
b.在二次剩余静校正之后做速度分析。
c.采用大道集進行速度分析。
d.在构造复杂处加密速度控制点。
(6)DMO叠加
针对本区的实际资料,采用DMO叠加,依据为:
a.水平反射和倾斜反射同相轴在DMO叠加过程中均能同时正确成像。
b.DMO技术改善了叠加速度对地层倾角的依赖,提高了速度分析精度,并为准确求取偏移成像速度场提供基础条件。
c.DMO本身是一种多道运算的部分偏移过程,在此过程,随机噪音得到了压制,提高了资料信噪比。
(7)叠后去噪
采用多项式拟合衰减随机噪声,利用一次波减去法削除中、深层的多次波。图2、图3为去噪前后叠加剖面对比图。
(8)偏移
采用15°有限差分法进行偏移,处理过程中对偏移速度进行充分试验。依据实验,对偏移速度采用时空变系数,使各地段达到最佳偏移效果。是图4为偏移后的时间剖面。
(9)提高频率
处理中对谱白化反谱积,反Q滤波、分频处理,脉冲褶积,迭后子波反褶积等提频方法加以综合利用,反复试验,在不过多损害信噪比的情况下尽量提高频率。
(10)特殊处理
为了能更加准确地反映地下真实情况,突出小构造,采用了如下特殊处理方法:
a.地震道积分
b.递推式波阻抗反演
c.三瞬处理
d.多道约束地层反演
4. 结论
针对黄土塬区复杂的地表地质条件,在野外采集完数据后,在三维地震勘探资料处理环节采用多项处理技术和流程,取得了较好的效果。
参考文献:
[1] 程建远,张广忠, 胡继武.黄土塬区的三维地震勘探技术[J].中国煤田地质,2004.12.
作者简介:李元杰(1981-),男,山东泰安人,毕业于山东科技大学地质工程专业,本科,工程师,主要从事煤矿采区地震勘探研究和应用工作。
[关键词]: 三维地震勘探 资料处理 应用
0. 引言
三维地震勘探技术在煤田上的应用经过近二十年的发展,在东部平原取得了显著的地质效果,但随着近几年的开采,煤炭资源越来越少,而中西部地区的煤炭资源占全国煤炭资源总量的2/3,资源勘探的重点已转向西部地区[1]。
由于西部地区第四系黄土层对地震波的吸收衰减比较强烈,且往往地形复杂,给地震勘探造成一定困难。随着三维地震勘探技术在西部黄土塬区的应用,针对黄土塬区三维地震勘探处理技术的应用,对于提高勘探质量为煤矿安全生产提供保障有着深远的影响。
1.项目概况
陕西某煤矿位于陕西省白水县,由于原有勘探程度远远不能满足采区设计和工作面划分的要求。煤矿决定对采区进行三维地震勘探,以为下一步的巷道布置和安全生产提供保障。由于勘探区内黄土层较厚,不利于地震波的传播,且黄土冲沟也发育,地表高差达200m,地形十分复杂;塬上及半坡密布大量的苹果园,测量通视相当困难,这给地震的采集造成较大的影响。
2.数据采集
(1)黄土覆盖区段。巨厚黄土对地震波的吸收衰减极为强烈;区内潜水面很深,低速带调查结果表明,黄土层速度极低,其与基岩面可形成良好的波阻抗界面。因此塬上施工时该界面能产生折射、强反射及层间多次波,对目的层反射波形成严重干扰,该区域是本区激发条件较差的地区。
(2)坡积地段。坡积物成份复杂、堆积松散、成孔难、激发难,高差变化剧烈,是本区最难获得资料地区。
(3)从原始资料上看,主要目的层反射波信噪比差异很大,勘探区南部边缘及勘探区西北部资料相对较差。
总的来说,经过野外的努力,对黄土覆盖区来说获得了较好的效果,资料有较大一部分主要目的层的信噪比很高,为完成勘探任务奠定了基础。
3.资料处理的主要技术措施
针对原始资料以上的特点,制定了本次资料处理的指导思想:在“三高”处理过程中,以保幅处理为重心,重点提高资料的信噪比。突出目的层,兼顾浅、中、深层。
(1)静校正
静校正是地震资料处理中的关键环节之一。由于地表高程及地表低(降)速带厚度、速度存在横向变化,使得由此产生的地震波旅行时差会对信号的叠加效果产生一定的不利影响,致使反射波同相轴信噪比下降、频率降低。
结合本区实际情况,确定了野外静校正,初至折射静校正、自动剩余静校正逐步细化的静校正应用方法。在此补充说明的一点是在绿山初至折射静校正的逐炮拾取阶段,务求所拾取的初至折射波来自于在全区较能连续追踪的同一层,以建立精确的近地表模型。
在准确求取了绿山所得静校正量后,分离长波长分量及短波长分量,应用短波长分量,解决邻道间的剧烈跳跃现象。在此基础上多次求取剩余静校正量。求自动剩余静校正量时,应在全区找一个较好的标志层,使其达到效果理想而且保真。图1是静校正前后单炮对比。
(2)振幅处理
振幅处理包括:
a.补偿地震波的地层吸收;
b.结合地层,选定速度进行球面扩散补偿;
c.对地表一致性振幅分解,求出振幅补偿因子,对地震数据进行消除由于激发、接收等因素引起的振幅能量差异进行一致性校正;
d.动态振幅均衡。
对振幅的上述处理,完全消除了由于地表剧烈变化,地层吸收等因素对振幅产生差异。使振幅变化真正反映地层物性参数的差异。
(3)干扰波消除
a.迭前滤波:15~25、140~160消除低频及高频干扰。
b.剔除坏道,不正常道,尖脉冲等。
c.初至干扰波及声波的切除。
(4)地表一致性处理
在地表一致性振幅补偿的基础上,选用地表一致性预测反褶积。完成在炮域,接收点域、共偏移距域的地表一致性预测,同时压缩子波,提高分辨率及信噪比。
(5)速度分析
由于静校正部分地段信噪比极低的影响,使速度分析很难一次到位,针对本区采取如下措施。
a.先采用常速度叠加,拾取较好段的速度值作为初始速度。
b.在二次剩余静校正之后做速度分析。
c.采用大道集進行速度分析。
d.在构造复杂处加密速度控制点。
(6)DMO叠加
针对本区的实际资料,采用DMO叠加,依据为:
a.水平反射和倾斜反射同相轴在DMO叠加过程中均能同时正确成像。
b.DMO技术改善了叠加速度对地层倾角的依赖,提高了速度分析精度,并为准确求取偏移成像速度场提供基础条件。
c.DMO本身是一种多道运算的部分偏移过程,在此过程,随机噪音得到了压制,提高了资料信噪比。
(7)叠后去噪
采用多项式拟合衰减随机噪声,利用一次波减去法削除中、深层的多次波。图2、图3为去噪前后叠加剖面对比图。
(8)偏移
采用15°有限差分法进行偏移,处理过程中对偏移速度进行充分试验。依据实验,对偏移速度采用时空变系数,使各地段达到最佳偏移效果。是图4为偏移后的时间剖面。
(9)提高频率
处理中对谱白化反谱积,反Q滤波、分频处理,脉冲褶积,迭后子波反褶积等提频方法加以综合利用,反复试验,在不过多损害信噪比的情况下尽量提高频率。
(10)特殊处理
为了能更加准确地反映地下真实情况,突出小构造,采用了如下特殊处理方法:
a.地震道积分
b.递推式波阻抗反演
c.三瞬处理
d.多道约束地层反演
4. 结论
针对黄土塬区复杂的地表地质条件,在野外采集完数据后,在三维地震勘探资料处理环节采用多项处理技术和流程,取得了较好的效果。
参考文献:
[1] 程建远,张广忠, 胡继武.黄土塬区的三维地震勘探技术[J].中国煤田地质,2004.12.
作者简介:李元杰(1981-),男,山东泰安人,毕业于山东科技大学地质工程专业,本科,工程师,主要从事煤矿采区地震勘探研究和应用工作。