用于木马流量检测的集成分类模型

来源 :西安交通大学学报 | 被引量 : 0次 | 上传用户:fsdafdsfsdsdf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统集成学习方法运用到木马流量检测中存在对训练样本要求较高、分类精度难以提升、泛化能力差等问题,提出了一种木马流量检测集成分类模型。对木马通信和正常通信反映在流量统计特征上的差别进行区分,提取行为统计特征构建训练集。通过引入均值化的方法对旋转森林算法中的主成分变换进行改进,并采用改进后的旋转森林算法对原始训练样本进行旋转处理,选取朴素贝叶斯、C4.5决策树和支持向量机3种差异性较大的分类算法构建基分类器,采用基于实例动态选择的加权投票策略实现集成并产生木马流量检测规则。实验结果表明:该模型充分利用了不
其他文献