论文部分内容阅读
Giant flares (GFs) are unusual bursts from soft gamma-ray repeaters (SGRs) that release an enormous amount of energy in a fraction of a second.The afterglow emission of these SGR-GFs or GF candidates is a highly beneficial means of discerning their composition,relativistic speed and emission mechanisms.GRB 200415A is a recent GF candidate observed in a direction coincident with the nearby Sculptor galaxy at 3.5 Mpc.In this work,we searched for transient gamma-ray emission in past observations by Fermi-LAT in the direction of GRB 200415A.These observations confirm that GRB 200415A is observed as a transient GeV source only once.A pure pair-plasma fireball cannot provide the required energy for the interpretation of GeV afterglow emission and a baryonic poor outflow is additionally needed to explain the afterglow emission.A baryonic rich outflow is also viable,as it can explain the variability and observed quasi-thermal spectrum of the prompt emission if dissipation is happening below the photosphere via internal shocks.Using the peak energy (Ep) of the time-resolved prompt emission spectra and their fluxes (Fp),we found a correlation between Ep and Fp or isotropic luminosity Liso for GRB 200415A.This supports the intrinsic nature of Ep-Liso correlation found in SGRs-GFs,hence favoring a baryonic poor outflow.Our results also indicate a different mechanism at work during the initial spike,and that the evolution of the prompt emission spectral properties in this outflow would be intrinsically due to the injection process.