论文部分内容阅读
为克服基于单一特征的跟踪方法在复杂环境和光照变化下易导致跟踪失败的缺点,提出了一种基于多特征融合的粒子滤波跟踪算法。通过基于HSV的多块颜色直方图来表征目标的总体分布,而方向梯度直方图又包含了一定的结构信息,两者互为补充,将两者融合于粒子滤波的框架中。同时,自适应更新融合权重、模板和噪声分布参数,动态调节粒子数目,在环境干扰较大(如遮挡)时,分配较多的粒子。实验结果表明,算法鲁棒性较高,同时提高了跟踪的精度。