论文部分内容阅读
研究了支持向量机与自组织神经网络的原理,利用支持向量机的小样本学习与推广能力强的特点,结合自组织神经网络良好的学习能力与收敛速度,实现了对支持向量机算法的改进。利用Lincoln实验室入侵检测系统评估数据集合对改进算法进行测试,并将实验结果与BP神经网络进行了比较,结果表明,改进的算法在检测精度与训练时间方面均优于BP神经网络。