论文部分内容阅读
We are entering a new era of computing, characterized by the need to handle over one zettabyte(1021bytes, or ZB) of data. The world’s capacities to sense, transmit, store, and process information need to grow three orders of magnitude,while maintain an energy consumption level similar to that of the year 2010. In other words, we need to produce thousand-fold improvement in performance per watt. To face this challenge, in 2012 the Chinese Academy of Sciences launched a 10-year strategic priority research initiative called the Next Generation Information and Communication Technology initiative(the NICT initiative). A research thrust of the NICT program is the Cloud-Sea Computing Systems project. The main idea is to augment conventional cloud computing by cooperation and integration of the cloud-side systems and the sea-side systems,where the “sea-side” refers to an augmented client side consisting of human facing and physical world facing devices and subsystems. The Cloud-Sea Computing Systems project consists of four research tasks: a new computing model called REST2.0 which extends the REST(representational state transfer) architectural style of Web computing to cloud-sea computing,a three-tier storage system architecture capable of managing ZB of data, a billion-thread datacenter server with high energy efficiency, and an elastic processor aiming at energy efficiency of one trillion operations per second per watt. This special section contains 12 papers produced by the Cloud-Sea Computing Systems project team, presenting research results relating to sensing and REST 2.0, the elastic processor, the hyperparallel server, and the cloud-sea storage.
We are entering a new era of computing, characterized by the need to handle over one zettabyte (1021bytes, or ZB) of data. The world’s capacities to sense, transmit, store, and process information need to grow three orders of magnitude, while maintain an energy consumption level similar to that of the year 2010. In other words, we need to produce thousand-fold improvement in performance per watt. To face this challenge, in 2012 the Chinese Academy of Sciences launched a 10-year strategic priority research initiative called the Next Generation Information and Communication Technology initiative (the NICT initiative). A research thrust of the NICT program is the Cloud-Sea Computing Systems project. The main idea is to augment conventional cloud computing by cooperation and integration of the cloud-side systems and the sea-side systems, where the “sea-side ” refers to an augmented client side consisting of human facing and physical world facing devices and subsystems. The Cloud-Sea Computing Systems project consists of four research tasks: a new computing model called REST2.0 which extends the REST (representational state transfer) architectural style of Web computing to cloud-sea computing, a three-tier storage system architecture capable of managing ZB of data, a billion-thread datacenter server with high energy efficiency, and an elastic processor aiming at energy efficiency of one trillion operations per second per watt. This special section contains 12 papers produced by the Cloud-Sea Computing Systems project team, presenting research results relating to sensing and REST 2.0, the elastic processor, the hyperparallel server, and the cloud-sea storage.