论文部分内容阅读
将统计学习理论和LS-SVM用于变形分析预报,采用小生境遗传算法与交叉验证法相结合进行LS-SVM参数的选取,并用参数优选后的LS-SVM与混沌理论相结合对变形监测数据进行建模预测,并与BP和RBF两种神经网络的预测结果进行了比较分析。实例表明,基于组合LS-SVM的变形数据预报模型具有良好的效果。