论文部分内容阅读
肉牛的运动行为反映其健康状况,在实际养殖环境下如何识别肉牛并对其进行跟踪,对感知肉牛的运动行为至关重要。基于YOLO v3改进算法(LSRCEM-YOLO),利用视频监控实现了实际养殖环境下的肉牛实时跟踪。该方法采用MobileNet v2作为目标检测骨干网络,根据肉牛分布不均、目标尺度变化较大的特点,提出通过添加长短距离语义增强模块(LSRCEM)进行多尺度融合,结合Mudeep重识别模型实现了肉牛多目标跟踪。结果表明:在目标检测方面,LSRCEM-YOLO的m AP值达到了92.3%,模型参数量