【摘 要】
:
通过设计符合硬丁腈性能标准的软丁腈胶料配方,对比了可塑度、硫化特性以及粘合性能.结果 表明,替代后的软丁腈橡胶各项性能均能满足硬丁腈性能的指标要求,且软丁腈与硬丁腈相比具有更好的加工性能.
【机 构】
:
沈阳第四橡胶(厂)有限公司,辽宁沈阳 110142;青岛华凌化工产品有限公司,山东青岛 266000
论文部分内容阅读
通过设计符合硬丁腈性能标准的软丁腈胶料配方,对比了可塑度、硫化特性以及粘合性能.结果 表明,替代后的软丁腈橡胶各项性能均能满足硬丁腈性能的指标要求,且软丁腈与硬丁腈相比具有更好的加工性能.
其他文献
The development of high-efficiency and low-cost bifunctional oxygen electrocatalysts is critical to enlarge application of zinc-air batteries(ZABs).However,it still remains challenges due to their uncon-trollable factor at atomic level during the catalyst
Chemical looping technology holds great potential on efficient CO2 splitting with much higher CO pro-duction and CO2 splitting rate than photocatalytic processes. Conventional oxygen carrier requires high temperature (typically 850–1000 ℃) to ensure suffi
在Gleeble-3800热模拟机上采用等温压缩实验研究了N08800铁镍基合金(/%:0.015C,20.8Cr,31.2Ni,0.42Al,0.35Ti)的高温压缩变形行为.获得合金在温度为1150~1280℃、应变速率为1~20 s-1条件下的真应力-真应变曲线.通过线性回归得到N08800合金的高温材料常数a为0.0092,n为4.34,热变形激活能Q为432780J/mol,建立了N08800合金的热变形峰值本构模型.结果 表明,N08800合金在热压缩变形过程中,高温低应变速率下,动态再结晶容
Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries (SIBs). However, their practical applications are greatly restricted by the po
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic mod-eling. A plasma chemistry kinetic mechanism incorpo
It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity, large electrolyte-accessible surface area and more exposed active sites for energy storage applications. Herein, MXene/Co
The booming growth of organic-inorganic hybrid lead halide perovskite solar cells have made this promis-ing photovoltaic technology to leap towards commercialization. One of the most important issues for the evolution from research to practical applicatio
Periodically changed current is called pulse current. It has been found that using the pulse current to charge/discharge lithium-ion batteries can improve the safety and cycle stability of the battery. In this short review, the mechanisms of pulse current
分析得出10B28钢结疤的主要原因是钢水N含量偏高,钢水中的Ti不足以完全固N,致使大量的细小的BN在晶界析出,铸坯在矫直过程形成裂纹,进而在轧制过程形成线材表面结疤.取样分析证实,精炼过程使用高N含量(4.6%)缓释脱氧剂造渣是钢水含N高的主要原因;使用铝粒替代缓释脱氧剂脱氧造渣,精炼过程增N量可由43.4×10-6降至11.4×10-6.通过将转炉出钢C由0.06%提高至≥0.08%、降低精炼前期加热功率、铝粒替代缓释脱氧剂造渣等措施,10B28钢N含量稳定控制在70×10-6以下,线材合格率由不足5
Although Ti3C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques, their restacking makes against and even hinders the Li ions diffusion within them, thereby decreasing the capacity as well as rate performance of conventiona