Time series prediction of mining subsidence based on a SVM

来源 :Mining Science and Technology | 被引量 : 0次 | 上传用户:MM_8023
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements. In order to study dynamic laws of surface movements over coal mines due to mining activities, a dynamic prediction model of surface movements was established, based on the theory of support vector machines (SVM) and times-series analysis. An engineering application was used to verify the correctness of the model. Measures from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary, zero means and normality. Tth the data were used to train the SVM model. A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters. MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end, the model was used to predict future surface movements. Data from observation stations in Huaibei coal mining area were used as an example. The results show that the maximum absolute error of subsidence is 9 mm, the maximum relative error 1.5%, the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%. accuracy and reliability of the model meet the requirements of on-site engineering. the results of the study provide a new approach to investigate the dynamics of surface movements.
其他文献
本文对苏轼词风格进行了较为系统的研究。界定了苏轼的豪放词、婉约词、谑浪词和农事词等风格。分析了苏轼词以旷达超脱为特色的多样性统一的特征。 第一部分谈苏轼的豪放