论文部分内容阅读
提出一种用于高光谱图像降维和分类的分块低秩张量分析方法.该算法以提高分类精度为目标,对图像张量分块进行降维和分类.将高光谱图像分成若干子张量,不仅保存了高光谱图像的三维数据结构,利用了空间与光谱维度的关联性,还充分挖掘了图像局部的空间相关性.与现有的张量分析法相比,这种分块处理方法克服了图像的整体空间相关性较弱以及子空间维度的设定对降维效果的负面影响.只要子空间维度小于子张量维度,所提议的分块算法就能取得较好的降维效果,其分类精度远远高于不分块的算法,从而无需借助原本就不可靠的子空间维度估计法.仿真