论文部分内容阅读
盲源分离(BSS)算法通常需预先假设源信号的概率密度函数(PDF),并由此获得关键的激活函数(AF),进而从混合信号中分离出源信号。但若假设的概率密度函数与真实概率密度函数差异较大,源信号将不能被正确分离。基于峰度的盲源分离开关算法无需假设源信号的概率密度函数,可直接对独立分量分析(ICA)中的激活函数进行自适应学习。计算机仿真证明,该算法可有效进行盲源分离。