【摘 要】
:
采用水热合成法制备了CuBi2O4/CdMoO4纳米复合材料,并通过扫描电镜(SEM)、X射线衍射仪(XRD)和电化学工作站等方式,对该复合材料的形貌、晶体结构以及催化剂内电子与空穴对的转移情况进行了一系列表征.在可见光的照射下,通过光催化降解染料亚甲基蓝来测定所制备样品的光催化活性.结果表明,所制备的CuBi2O4/Cd-MoO4(9:1)复合光催化剂,其降解效率显著高于纯CuBi2O4和纯CdMoO4.此外,CdMoO4的掺杂大大提高了CuBi2O4/CdMoO4复合材料中光生电子与空穴对的转移,使其
【机 构】
:
四川轻化工大学,四川 自贡 643000
论文部分内容阅读
采用水热合成法制备了CuBi2O4/CdMoO4纳米复合材料,并通过扫描电镜(SEM)、X射线衍射仪(XRD)和电化学工作站等方式,对该复合材料的形貌、晶体结构以及催化剂内电子与空穴对的转移情况进行了一系列表征.在可见光的照射下,通过光催化降解染料亚甲基蓝来测定所制备样品的光催化活性.结果表明,所制备的CuBi2O4/Cd-MoO4(9:1)复合光催化剂,其降解效率显著高于纯CuBi2O4和纯CdMoO4.此外,CdMoO4的掺杂大大提高了CuBi2O4/CdMoO4复合材料中光生电子与空穴对的转移,使其表现出优异的光催化性能.该复合材料在3次催化循环实验后,降解率仍达到70%左右,具有良好的可重复性.
其他文献
采用同轴环施力法研究了单电池还原前后抗弯强度的Weibull模量与其厚度之间的关联性.结果 表明:对应1.1、0.9 mm与0.7 mm 3个厚度,NiO-YSZ(氧化钇稳定的氧化锆)阳极支撑单电池的Weibull模量分别为4.56、4.78与6.16,随着样品厚度降低,Weibull模量逐渐增加,这与阳极内部缺陷数量减少相对应;还原之后Ni-YSZ阳极支撑单电池的Weibull模量分别提高至8.66、12.49与9.37,塑性Ni相的形成是抑制裂纹扩展的主要原因,其中厚度为0.9 mm的单电池呈现最佳的
以酚醛树脂为碳前驱体,硼酸为硼源,三嵌段共聚物F127为软模板,氧化石墨烯为改性剂,通过溶剂挥发诱导自组装法制备了硼掺杂介孔碳(BMCs)以及硼掺杂石墨烯基介孔碳材料复合材料(BMC/GOs).通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪等研究硼掺杂及氧化石墨烯复合对介孔碳结构的影响,利用电化学工作站研究硼掺杂及氧化石墨烯复合对介孔碳性能的影响.测试结果表明,所制备的复合材料BMC/GO-40(氧化石墨烯悬浮液质量为40 mg)的比表面积为462.5 m2/g,平均孔径为5.52 nm.硼元素以
采用偏轴磁控溅射法,以单晶钛酸锶(001)SrTiO3(STO)为衬底,不同沉积温度下外延生长了La0.5Sr0.5CoO3 (LSCO)氧化物底电极.X射线衍射仪(XRD)和原子力显微镜(AFM)结构表征以及四探针方阻测试结果表明:LSCO薄膜外延(00l)取向最优温度沉积条件为550℃.此外,利用脉冲激光沉积法,以LSCO/STO异质结为模板,构架了Pt/Na0.5Bi0.5TiO3 (NBT)/LSCO/STO铁电电容器.XRD和AFM结构表征表明:NBT薄膜为(00l)外延结构.电流密度-电压测试
传统的储能器件由于容量有限,经常需要更换或者进行接线充电而难以适应可穿戴电子在某些特殊场合下的正常工作需求.利用压电材料的“压电效应”,构建基于“力-电转换”的压电型自充电储能器件,是解决以上问题的有效途径.对压电型自充电储能器件的研究进展进行综述,对其设计思路、特点、构建基础和具体应用等进行介绍.
以扁平化FeCo为核,通过水热反应法将TiO2和Fe3O4包覆在FeCo表面,成功制备了扁平FeCo@TiO2和FeCo@TiO2@Fe3O42种核壳结构.采用扫描电子显微镜和X射线衍射对扁平FeCo@TiO2和扁平FeCo@TiO2@Fe3O4核壳结构的微观形貌和物相组成进行了表征.结果 表明:制备粉体呈片状,直径为20~50 μm,厚度为3~5 μm;包覆层TiO2和Fe3O4均匀地分布在扁平化FeCo表面.通过测试样品2~18 GHz频率范围内的复介电常数和复磁导率,采用传输线理论计算样品的反射损耗
以间苯二酚、二水乙酸锌和七水硫酸亚铁为原料,用湿化学法和高温热处理制备了的Fe@(ZnO/C)复合材料.结果 表明:引入了纳米球链Fe粉后的Fe@(ZnO/C)三元复合材料具有更优的阻抗匹配和更高的衰减系数,当频率为10.91 GHz匹配厚度为2.73 mm时,样品的最小反射损耗(rRLmin)达到-56.01 dB,有效吸收带宽(rRLmin<-10dB)达到5GHz(8.54~13.54 GHz),表现出优异的电磁波吸收性能.
将气相法二氧化硅和聚二甲基硅氧烷混合形成一定黏度的悬浮液,利用气相法二氧化硅纳米粒子在喷涂过程中的三维聚集,形成了微纳米级的粗糙表面,并将低表面能物质聚二甲基硅氧烷储存在气相法二氧化硅纳米粒子三维孔隙中,在不同基材表面喷涂制备了自修复超疏水涂层.涂层表面在经等离子破坏后,仅需室温放置或100℃、30 min处理即可恢复其超疏水性能,自修复次数超过20次.同时该涂层还具有良好的耐高温、耐酸碱、耐摩擦和耐冲刷性能.
用一步水热法制备了CeO2负载的不同比例过渡金属(Co,Mn)棒状纳米材料,通过X射线衍射仪、扫描电子显微镜、透射电子显微镜、Raman光谱仪、X射线光电子能谱仪、BET比表面分析仪、H2程序升温还原和CO程序升温脱附表征并分析了引入不同含量过渡金属(Co,Mn)对催化剂的晶格常数、表面不同价态元素含量、比表面积和CO催化氧化性能等的影响.此外,CeO2负载的过渡金属(Co,Mn)相比于纯相CeO2表现出更加优异的催化活性.Co-CeO2催化氧化50% CO的温度(T50%)范围为97~133℃,Mn-C
通过TiO2协同凹凸棒土(AT)构筑微纳米粗糙结构,以聚二甲基硅氧烷(PDMS)为低表面能物质成功制备了具有光催化功能的超疏水涂层(AT/TiO2@PDMS),研究了不同掺量的AT对涂层表面润湿性和光催化性能的影响.结果 表明:AT/TiO2@PDMS涂层表面的润湿角均大于150°,当AT掺量为75%(质量分数)时,接触角可达165%汞灯照射11h后,25%AT掺量的涂层对罗丹明的降解率最高为94%,且涂层的超疏水性几乎保持不变.这表明该涂层具有良好的光催化性和化学稳定性.此外,该涂层具有基材适用性,可涂
硼硅酸盐玻璃具有包容率高、熔制温度合理、对废液组分变化适应性强、抗辐射、化学稳定性好等优点,是目前工业应用最广泛的高放废液固化玻璃基质.本文综述了硼硅酸盐玻璃固化高放射性元素的机理、高放废液硼硅酸盐玻璃固化体的关键产品性能、工艺性能和经济性指标的相关研究进展,以及硼硅酸盐玻璃固化体的工程化应用情况.根据国内硼硅酸盐玻璃固化体的研究现状,未来仍需开展系统的硼硅酸盐玻璃配方研究,建立配方设计模型以适应不同类型高放废液的固化需求;同时需开展玻璃固化体的腐蚀机理研究和长期化学稳定性评估,以制定并完善玻璃固化体评估