论文部分内容阅读
全面、准确地看待函数的零点,利用函数的零点对函数的图像进行有效的预测和分析。小零点,大智慧!1关于零点存在定理的思考人教A版《数学1》(必修)教材中有这样的结论:“如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根”。
A comprehensive and accurate view of the zero point of the function, the function of the zero point of the function of the image for effective prediction and analysis. Small zero, great wisdom! 1 on the zero existence theorem PEP A “math 1” (compulsory) textbook has the following conclusion: "If the function y = f (x) in the interval [a, b] If the image is a continuous curve with f (a) · f (b) <0 then the function y = f (x) has zero in the interval (a, b) , So that f (c) = 0, this c is the root of the equation f (x) = 0.