论文部分内容阅读
对基因表达谱进行特征基因选择不仅能改善疾病分类方法的效能,而且为寻找与疾病相关的特征基因提供新的途径.通过比较用调整p值的t检验、非参数评分两种特征基因选择算法后和未进行选择时支持向量机(SVM)分类器的分类性能、支持向量(SV)的吻合度、错分样本ID的吻合度和对样本均匀翻倍后的稳定性.结果发现:特征选择后线性、核函数为二阶多项式和径向基的SVM分类性能明显提高;特征选择前后的SV及错分样本ID的吻合度均较高;SVM的稳定性较好.由此得出结论:这两种特征选择算法具有一定的有效性.