论文部分内容阅读
证据理论C均值(ECM)作为传统聚类方法的一种改进仍然存在着对噪声敏感和易于陷入局部极小值的缺点,鉴于此,提出一种遗传算法(GA)和证据理论C均值相结合的分割方法,并且在分类过程中引入了位置信息。遗传算法具有全局搜索的能力,很好地克服了证据理论C均值结果局部最优的缺点,而位置信息的引入则解决了对噪声敏感的问题。实验结果证明,该方法收敛速度快,迭代步数少,分割精度高。