论文部分内容阅读
遗传算法是一种模拟自然界生物进化的搜索算法,经典遗传算法采用的都是固定参数,这是对性能的一种局限和束缚。为解决这些问题,在算法中引入自适应遗传算法(AGA),即交叉概率Pc和变异概率Pm能够随适应度自动改变。自适应遗传算法在保持群体多样性的同时,保证遗传算法的收敛性。AGA由于改进了各遗传算子的参数,使算法能够适应于种群进化各个阶段的特征,使算法的优化效率和解的质量得到提高。本文将遗传算法和投资组合结合起来,提出了基于遗传算法下的投资组合模型,并举例验证。