论文部分内容阅读
针对基于原始词包模型的车型识别算法识别速度慢、识别率低的问题,提出了一种基于改进词包模型的车型识别算法。首先使用Dense-SURF算法提取图像特征,并通过改进稠密采样策略进一步提高特征提取速度;然后提出特征上下文-矢量量化(FC-VQ)编码算法,并用其对特征向量进行编码,使编码后的特征包含空间位置信息,进而提高识别率;最后采用快速直方图相交核作为核函数,将提取到的特征送入SVM分类器进行训练或识别。实验结果表明:与其它车型识别算法相比,论文算法识别速度更快且识别率更高。