《申报》中的近代中国儿童观嬗变过程研究

来源 :临沂大学学报 | 被引量 : 0次 | 上传用户:fqdml
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近代中国儿童观经历了由“小大人”观向“儿童本位”观的转变,这集中表现在《申报》中“小朋友”称谓内涵的演进方面。“小朋友”一词在现代汉语语境中一般与儿童相联系。实际上,最初的“小朋友”与儿童无关,而是一个成人专属称谓,它是随着近代中国“儿童本位”观的建立而变为儿童专属性质的。“小朋友”在中国古代“小大人”观指导下产生。从《申报》记载中可以看出,随着近代中国儿童福利事业的发展,该称呼又经历了同龄化、低龄化和昵称化转向,这是其“儿童本位”内涵形成的过渡阶段。20世纪二三十年代,随着以“发现儿童”为目的的“儿童本位”观在中国的流行,“小朋友”一词的“儿童本位”内涵最终定型,并沿用至今。
其他文献
近年来,二维半导体材料逐渐成为了材料研究的热门之一。MXene二维材料因其具有大的比表面积、良好的亲水性、优异的导电性和力学性能引起了众多科研工作者的研究兴趣。MXene二维材料在储能、电磁屏蔽材料、生物传感器等领域有着广泛的应用。Hf2CO2是一种具有O官能团的MXene二维材料,呈现半导体特性,并且具有较高的载流子迁移率。Hf2CO2具有较高的导热系数,较低的热膨胀系数,是一种理想的半导体器件
学位
铝/钢双金属复合材料兼具了铝合金的比重低、耐腐蚀性好、铸造性好和钢的高强度、耐磨性好等性能,在汽车发动机缸套轻量化上具有十分广阔的前景。由于Al和Fe的物理化学性能差异性较大,铝/钢双金属的连接十分困难。液固复合法工艺简单,且对材料性能的限制性较小,是制备铝/钢双金属复合材料比较广泛且经济适用的一种工艺。但是在实际的液固复合过程中,铝/钢之间很难形成冶金结合,导致界面结合不稳定,从而严重制约了铝/
学位
随着人们环保意识增强和微电子封装技术飞速发展,Sn-Ag-Cu系无铅钎料由于其较高的综合性能成为锡铅钎料的最佳替代合金之一,呈现出良好的发展前景。现如今,电子产品焊点越来越微小化、复杂化,其承受的压力不断增大,易发生失效。为满足苛刻环境下微电子连接对高强钎焊接头可靠性的要求,在无铅钎料合金中添加纳米级增强相对钎料进行强化受到人们的广泛关注。氧化锆陶瓷颗粒性质稳定,强度高,作为增强相可以很好的提高钎
学位
Cu-Al2O3复合材料具有良好的导电性能、力学性能以及较高的抗软化性能,是目前商业化应用较为广泛的高强高导铜基材料,在电磁轨道炮、高压触头开关、接触电网等载流摩擦磨损领域具有广阔的应用前景。然而,随着上述领域的快速发展,对载流摩擦磨损领域用铜基材料综合性能提出了更高的要求,材料在具备高强高导性能的同时,还需兼具有良好的抗载流摩擦磨损性能以及耐电弧侵蚀性能。研究表明:采用多元混杂强化方式有望突破传
学位
自石墨烯被成功制备后,对于二维材料研究的热度高居不下,其也因优异性能而广泛应用于各种功能性电子器件。硫属化合物是其中重要的一类,主要包含了过渡金属二硫化物与ⅢA-ⅥA族硫属化合物。将不同种类的二维材料垂直堆叠,其间由范德华力相结合,可形成范德华异质结,范德华异质结由于其独特新奇的电子性质而备受关注。基于此,本文将不同种类的硫属化合物构建为垂直堆叠的范德华异质结,通过第一性原理计算,探索其电子性质及
学位
随着国家“双碳”目标的达成需要新能源发电技术的强力支撑,蓄电池储能变换器是新能源发电和微电网的核心接口电路。本文针对LLC谐振变换器传统PFM(频率)调制方式变换器工作范围较窄问题,采用PFM与PSM(移相)混合调制提升手段;基于扩展描述函数法分别建立了 PFM与PSM调制模式下的传递函数;针对PSM控制方式下小信号模型建立困难的现状,推导了小信号模型以提供参考,提出了 LLC谐振变换器PFM与P
学位
<正>9月1日,在2022年中国国际服务贸易交易会上,美团自主研发的无人机成为到场观众的关注热点之一。美团2022年二季度财报显示,即时配送订单数增长至41亿笔。疫情进一步加速了消费者“万物到家”的即时需求,美团无人机的研发与应用,助力“最后三公里”末端配送服务更加流畅。近年来,人力成本的变化和更高效的即时配送需求,都在拓宽无人配送的发展前景。近日,由中国民航管理干部学院、迅蚁科技、
期刊
最近几年,卤化物钙钛矿作为一种直接带隙材料,具有发光波长可调、载流子传输特性优异、光电转换效率高、制备成本较低等优点,在发光二极管、激光二极管、太阳能电池及光电探测器等光电器件领域都有着深入的研究。卤化物钙钛矿发光二极管具有外量子效率高、色纯度优异等优点吸引了研究者的研究热情。全无机CsPbBr3钙钛矿材料除了具有卤化物钙钛矿材料的各种优势外,相较于有机-无机杂化钙钛矿材料还具有更优异的稳定性,所
学位
光镊作为一种具有无伤害、无接触特性的工具,在微观领域备受关注。Arthur Ashkin也因发明光镊而获得2018年诺贝尔物理学奖。最初的光镊大多使用高斯光束,捕获模式单一,并不能覆盖所有应用需求。涡旋光场由于其可以给光镊提供一个横向的“扳手力”目前已经引起了广泛重视。相应地,具有多个涡旋奇点的涡旋阵列也受到了大量的研究,并且已经应用于一些诸如多粒子操纵、原子量子马达及玻色-爱因斯坦凝聚等前沿领域
学位
涡旋光束作为一种经典的相位型结构光场,具有螺旋形波前,暗中空的光强分布,并且携带有轨道角动量。由于涡旋光束在玻色-爱因斯坦凝聚、量子信息编码、粒子旋转与操纵及图像处理等领域具有重要的研究价值,因此成为了近年来非常重要的前沿研究热点。然而,单一的涡旋光束已无法满足相关应用的需求,由多涡旋光束叠加产生的复杂结构光场应运而生。在涡旋光束叠加时,产生破坏性干涉,通过涡旋光束的相关参数影响,可以形成丰富的光
学位