论文部分内容阅读
为提高多目标进化算法的分布性和收敛性,提出一种基于海明距离差异的多目标进化算法。在非支配前沿的基础上定义海明等级,依据海明距离的大小对个体进行选择操作。同时结合海明差异和Pareto评价方法,对外部存储器中最优懈进行更新和维护,通过结构相似度构建小生境空间,并引导算法趋向Pareto最优前沿面。对6个典型函数的测试结果表明,较其他对比算法,该算法在具备收敛性的同时能够保持较好的均匀性分布。