论文部分内容阅读
假定内摩擦角与位移呈非线性关系,采用所提出的土压力计算理论,结合室内模型试验结果,对墙体的平移(T模式)、绕墙体底采点转动(RBT模式)、绕墙顶采点转动(RTT模式)变位模式下考虑位移的被动土压力进行计算分析,分析表明:计算结果在土压力强度沿墙高度上的分布、土压力合力大小以及合力作用点位置均与实测值较为吻合,从而表明:(1)用该计算理论公式计算不同变位模式下被动土压力是可行的。(2)从土压力强度的计算值和实测值吻合情况来看:RBT变位模式下计算值与实测值符合最好,T变位模式下次之,RTT变位模式下相对最差。(3)从达到朗肯被动土压力合力所需位移量来看:T变位模式下最小,RTT变位模式下次之,RBT变位模式下相对最大。(4)土压力合力作用点位置:T变位模式下在离墙底1/3高度处,RBT模式下均位于离墙底1/3高度以上,RTT模式下均位于离墙底1/3高度以下,并且RBT和RTT模式下均随着转动点至挡土墙最近端点的距离与墙高的比值n的增大逐渐向T变位模式下的合力作用点位置靠拢(即离墙底1/3高度处),这一观点与事实情况完全相符。
Assuming that the internal friction angle has a nonlinear relationship with the displacement, the proposed theory of earth pressure calculation and the indoor model test results are used to analyze the wall translation (T-mode), wall-bottom turning (RBT mode) The results show that the distribution of soil pressure along the height of the wall, the magnitude of the resultant force of earth pressure and the location of the resultant force point are all consistent with the measured values The results show that: (1) It is feasible to calculate passive earth pressure in different displacement modes by using the calculation formula. (2) According to the coincidence between calculated and measured values of soil pressure intensity, the calculated value of RBT displacement model is in good agreement with the measured value, the next is T-displacement mode, and the other is the worst under RTT displacement mode. (3) From the displacement needed to reach Rankine’s passive earth pressure, the minimum displacement in T mode, the next in RTT displacement mode and the relative maximum in RBT displacement mode. (4) Position of earth pressure synergy: In T mode, at 1/3 height from the bottom of the wall, RBT mode is above 1/3 height from the bottom of the wall and 1/3 Height, and in RBT and RTT mode, gradually move closer to the point of application of force in T-displacement mode (ie, from the bottom of the wall 1 / 3 height), this view is completely consistent with the facts.