论文部分内容阅读
针对施工现场环境复杂,难以高效管理的问题.提出了基于工地场景的深度学习目标跟踪算法,辅助施工顺利进行.根据工地现场目标的连续性,构建增强群跟踪器,提升目标成功跟踪的概率.然后从滑动窗口、Stacked Denoising Auto Encoder(SDAE)和Support Vector Machine(SVM)三方面组建深度检测器.在滑动窗口方面:从梯度角度建立模型实现窗口自适应.在SDAE算法方面:构建反向算法微调网络参数.优化SVM算法降低跟踪时目标漂移和跟踪失败的概率,最终实现目标高精度跟踪