论文部分内容阅读
为提高核电厂旋转设备故障诊断精度,本文提出了一种经验小波变换与GG聚类相结合的故障诊断方法。应用EWT对轴承振动信号进行分解,得到一系列调幅-调频分量,结合K-L散度筛选出包含信号特征信息的主分量。计算分量样本熵及LZ复杂度作为信号的特征向量,输入到GG聚类器中分析并得到分类结果。实验表明:相较于EWT-FCM、EWT-GK聚类以及EMD-GG聚类算法,该方法的分类性能更优,能够为核电厂旋转设备故障诊断提供一种可靠有效的方法。