基于加权k-均值聚类与粒子群优化的多航迹规划

来源 :系统工程与电子技术 | 被引量 : 0次 | 上传用户:honghui2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对复杂环境下的无人机多航迹规划问题,提出了将粒子群优化(particle swarm optimization,PSO)算法与加权k-均值聚类算法相结合的规划方法。每个粒子表示一条航迹,采用加权k-均值聚类算法对粒子进行分类,得到多个粒子子群,在每个子群内部进行一条可行航迹的优化,最终得到多条不同的可行航迹。对传统k-均值聚类算法进行改进,采用排挤机制产生初始聚类中心,针对实际环境中突发威胁的分布不均性,在聚类过程中,对航迹节点按照所在区域突发威胁的出现概率进行加权,提出了加权k-均值聚类算法。仿真实验表明,所提出的方法能够有效地得到无人机的多条可行航迹。 In order to solve the multi-track planning problem of UAV in complex environment, a planning method combining particle swarm optimization (PSO) with weighted k-means clustering algorithm is proposed. Each particle represents a track, and the weighted k-means clustering algorithm is used to classify the particles to obtain multiple particle subgroups. One feasible track is optimized within each subgroup to finally obtain a plurality of different feasible tracks . The traditional k-means clustering algorithm is improved, and the crowding-out mechanism is used to generate the initial cluster centers. According to the uneven distribution of sudden threats in the real environment, in the clustering process, according to the sudden threat The probability of occurrence is weighted, a weighted k-means clustering algorithm is proposed. The simulation results show that the proposed method can effectively obtain a number of feasible trajectories of the UAV.
其他文献
文章探讨了在新形势下,高校图书馆管理工作怎样适应新形势发展的需要及其管理工作的重点.