论文部分内容阅读
针对单特征目标跟踪算法的鲁棒性较差以及不能充分利用最新的量测信息等问题,提出了一种基于多特征融合的改进UPF(Unscented Particle Filter)跟踪算法.基于比例最小偏度单形采样策略的UKF(Unscented Kalman Filter)算法和IKF(Iterated Kalman Filter)算法对粒子滤波算法进行改进,并在改进的算法框架下,采用不确定性度量方法融合目标的颜色和纹理特征,对目标进行跟踪.仿真实验表明,改进算法提高了跟踪精度,对复杂背景下的目标进行跟踪有较好的效