论文部分内容阅读
心电图(Electrocardiogram,ECG)心拍分类是心律失常诊断的重要步骤,为了准确检测心律失常类型,提出了一种利用改进的残差网络进行ECG分类的算法.首先使用CEEMDAN-改进小波阈值算法去除心电信号中的噪声,然后构建改进残差网络实现对ECG的分类,在该改进残差网络中,首先将传统深度残差网络中的卷积层、池化层替换成Inception模块,从而提取不同尺度的特征;然后设计了残差嵌套网络,实现了ECG信号不同层次的特征融合,最后采用Softmax分类器进行分类.将该模型在MIT ̄BIH数据库进行