基于改进残差网络的心电信号识别分类算法研究

来源 :传感技术学报 | 被引量 : 0次 | 上传用户:bosigai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
心电图(Electrocardiogram,ECG)心拍分类是心律失常诊断的重要步骤,为了准确检测心律失常类型,提出了一种利用改进的残差网络进行ECG分类的算法.首先使用CEEMDAN-改进小波阈值算法去除心电信号中的噪声,然后构建改进残差网络实现对ECG的分类,在该改进残差网络中,首先将传统深度残差网络中的卷积层、池化层替换成Inception模块,从而提取不同尺度的特征;然后设计了残差嵌套网络,实现了ECG信号不同层次的特征融合,最后采用Softmax分类器进行分类.将该模型在MIT ̄BIH数据库进行
其他文献
无线传感器网络中传感器异常检测是确保数据可靠性和系统正常运行的重要环节.将无线传感器网络用图模型描述,针对图上边缘区或稀疏区的异常传感器难以检测及识别的问题,本文提出了一种基于子图拉普拉斯谱的异常传感器检测及识别方法.该方法首先对系统图进行子图划分,再将图上信号转换至拉普拉斯谱信号,然后经低通滤波器处理,将图频域信号还原至节点域信号,通过比较还原信号与采集信号来判断子图的异常情况,最后对异常子图进行分析识别.基于公开数据集验证,本文所提方法对于无线传感器网络中单个异常传感器的检测率可以达到95%以上,其漏