论文部分内容阅读
分析沪锌期货的特征,发现沪锌期货价格存在非线性和波动集聚性的特点。选择沪锌期货的相关指标作为参数,运用人工神经网络训练数据,进行价格涨跌预测,构建BP神经网络和卷积神经网络沪锌期货预测模型。实证研究结果表明:模型预测准确率高,预测效果良好,在盘整行情中可获得较高收益,为投资决策提供重要参考,并可在期货市场中进行广泛应用。