论文部分内容阅读
提出了一种新的马尔可夫机制转换EGARCH模型,假定收益残差序列可以服从高斯分布、t-分布或广义误差分布,并允许非高斯分布中自由度与所处机制有关,以刻画可能存在的时变峰度及厚尾特征.以沪深300指数为例进行实证研究,发现新模型能区分隐藏在指数收益序列中的不同机制.预测成功率指标表明设定收益残差服从厚尾分布的MRS-EGARCH比单机制EGARCH具有更好的波动率预测性能.