论文部分内容阅读
The operation parameters (vibration, shaft displacement and pressure fluctuation) of No. 1 Francis reversible unit of Baoquan pumped-storage power station were measured on site in the no-load mode at net heads of 518.04, 522.01 and 530.38 m, respectively. The rotational speed fluctuations in the no-load mode at three net heads were beyond synchronization requirement with obvious S-shaped characteristic, and misaligned guide vanes (MGV) had to be put into use for synchronization. Further analysis demonstrated that the rotating frequency signal was generally dominant in vibration and shaft displacement mixing signal in the no-load mode, while the frequency domain was wide without an obvious main frequency in pressure fluctuation mixing signal. Besides, the SST k-ω turbulence model was adopted to simulate the four quadrant characteristic curves of Baoquan model pump-turbine at three gate openings, and the relative error between simulation results and model test data was within ±6%, indicating that the simulation method in this paper is feasible and S-shaped characteristic of the pump-turbine can be simulated with CFD method.
The operation parameters (vibration, shaft displacement and pressure fluctuation) of No. 1 Francis reversible unit of Baoquan pumped-storage power station were measured on site in the no-load mode at net heads of 518.04, 522.01 and 530.38 m, respectively. rotational speed fluctuations in the no-load mode at three net heads were beyond synchronization requirement with obvious S-shaped characteristic, and misaligned guide vanes (MGV) had to be put into use for synchronization. Further analysis demonstrated that the rotating frequency signal was generally In addition, the SST k-ω turbulence model was adapted to simulate the four quadrant characteristic curves of Baoquan model pump-turbine at three gate openings, and the relative error between simulation results and model test data was within ± 6%, indi cating that the simulation method in this paper is feasible and S-shaped characteristic of the pump-turbine can be simulated with CFD method.