论文部分内容阅读
复杂网络已成为当前的一个研究热点,复杂网络具有许多重要性质,其中社团结构是复杂网络最普遍最重要的拓扑性质之一。目前已有很多流行的网络社团挖掘算法,但是大部分社团挖掘算法存在准确性低、适用范围窄等缺陷,为了克服这些缺点。本文结合社团挖掘的相关研究,提出一种基于改进近邻传播的社团挖掘算法。首先采用最短路径计算任意节点对之间的距离,并运用近邻传播算法初步识别中心点;然后基于模块度优化的思想,建立“中心点过滤”数学模型,自动识别网络的社团结构;最后对本算法在一些广泛使用的网络数据上进行性能测试。测试结果表明,本算