论文部分内容阅读
Subunit interactions among the chloroplast ATP synthase subunits were studied using the yeast two-hybrid system. Various pairwise combinations of genes encoding a, p, y, 8 and e subunits of Spinach ATP synthase fused to the binding domain or activation domain of GAL4 DNA were introduced into yeast and then expression of a reporter gene encoding p-galactosidase was detected. Of all the combinations, that of y and e subunit genes showed the highest level of reporter gene expression, while those of a and p, a and e, p and e and p and 8 induced stable and significant reporter gene expression. The combination of 8 and e as well as that of 8 and y induced weak and unstable reporter gene expression. However, combinations of a and y, p and y and a and 8 did not induce reporter gene expression. These results suggested that specific and strong interactions between y and e, a and p, a and e, p and e and p and 8 subunits, and weak and transient interactions between 8 and e and 8 and y subunits occurred in the yeast
Subunit interactions among the chloroplast ATP synthase subunits were studied using the yeast two-hybrid system. Each pairwise combinations of genes encoding a, p, y, 8 and e subunits of Spinach ATP synthase fused to the binding domain or activation domain of GAL4 DNA were introduced into yeast and then expression of a reporter gene encoding p-galactosidase was detected. Of all the combinations, that of y and e subunit genes showed the highest level of reporter gene expression, while those of a and p, a and e, p and combination of a and y, a and e and p and 8 induced stable and significant reporter gene expression. The combination of 8 and e as well as that of 8 and y induced weak and unstable reporter gene expression. 8 did not induce reporter gene expression. These results suggest that specific and strong interactions between y and e, a and p, a and e, p and e and p and 8 subunits, and weak and transient interactions between 8 and e and 8 and y subunits occ urred in the yeast