论文部分内容阅读
为了提高协同过滤推荐系统的推荐效率和准确性,更好地向用户提供个性化的推荐服务,提出一种用户评分和属性相似度的推荐算法。首先分析当前协同过滤推荐研究的现状,设计相似度、兴趣倾向相似度、置信度等指标作为评分标准,使得用户相似度的计算更加准确、有区分度。然后根据用户属性来衡量用户之间的相似度,利用Movie Lens数据集和Book-Crossing数据集做对比实验,对比精度、通用性和不同稀疏度及冷启动情况下的性能。实验结果表明,本文算法不仅提高了推荐精度,而且明显优于其他协同过滤推荐算法,具有更高的实际