论文部分内容阅读
针对现有支持向量机(supportvectormachines,简称SVM)在构造多类分类器的过程中存在计算费时、搜索率不高的问题,提出了一种新的SVM决策树设计算法。引入具有优良的全局搜索性能的粒子群算法,将其应用于优化决策树,构造出一种自适应性强、识别率高的多元分类器,实现SVM的有效多值分类。将其结果应用于齿轮箱故障诊断中,试验结果证明改进后的SVM构造方法的有效性和准确性。