论文部分内容阅读
为提高分类性能,提出了一种新的基于数据离散化和选择性集成的SVM集成学习算法。该算法采用粗糙集和布尔推理离散化方法处理数据集,构造有差异的个体SVM以提高集成学习的性能。在训练得到一批SVM之后,算法采用了选择性集成提高性能并减小集成规模。实验结果表明,所提算法能取得比传统集成学习方法Bagging和Adaboost更好的性能。