论文部分内容阅读
提出一种基于支持向量机和粒子群算法的网络态势复合预测模型。模型使用滑动窗口方法将各原始离散时间监测点的安全态势值构造成部分线性相关的连续时间序列,以其作为安全态势数据样本集对支持向量机加以训练,生成预测模型。在支持向量机训练过程中,利用粒子群算法搜寻支持向量机的最优训练参数,以降低支持向量机参数选择的盲目性,提高预测精度。最后通过基于大量电力企业信息网络现场安全监测数据的实验,验证了复合预测模型的有效性。